

Zero-degree of collisions

- ✓Soft collisions, low-pT < 1GeV
 - → non-pQCD regime.
 - → Phenomenological model is needed
- √ High energy flux
 - → Most of longitudinal momentum is carried by remnants of collisions.

These are important for cosmic-ray physics, especially observation of ultra-high energy cosmic-rays

Cosmic-rays

UHECR observations

Composition measurement

- ✓ Improvement of hadronic interaction models is one of the keys for UHECR studies.
- ✓ LHC provide unique opportunities to verify the models at √s=14TeV (E_{CR}=10¹⁷eV)

Air shower developments and hadronic interaction

They must be measured experimentally
We do them at LHC and RHIC

These energetic π^0 and n are always emitted into the very forward region.

The LHCf Collaboration

- Y. Itow, Y. Matsubara, H. Menjo, Y. Muraki,
- K. Sato, K. Ohashi, M. Ueno (Nagoya Univ.) T. Sako (Univ. Tokyo)
- K. Kasahara, K. Yoshida (Shibaura Tech.) N. Sakurai (Tokushima Univ.)
- S. Torii (Waseda Univ.) K. Shimizu, T. Tamura (Kanagawa univ.)
- M. Haguenauer (PolyTech) W.C. Turner (Bereley)
- O. Adriani, E. Berti, L. Bonechi, M. Bongi, G. Castellini,
- R.D'Alessandro, P. Papini, S. Ricciarini, A. Tiberio (INFN Florence)
- A. Trocomi (INFN Catania)

The RHICf Collaboration

- Y. Itow, H. Menjo, K. Sato, M. Ueno (Nagoya Univ.)
- T. Sako (Univ. Tokyo) N. Sakurai (Tokushima Univ.)
- K. Kasahara, S. Torii (Waseda Univ.)
- Y. Goto, I. Nakagawa, R. Seidl (RIKEN) K. Tanida (JAEA)
- J. S. Park (Seoul univ.) B. Hong, M. H. Kim (Korea univ.)
- O. Adriani, E. Berti, L. Bonechi, R.D'Alessandro (INFN Florence)
- A. Trocomi (INFN Catania)

LHCf and RHICf experiments

LHCf experiment

- Zero degree measurement at CERN-LHC
- Two calorimeter detectors (Arm1, Arm2) at ± 140 m from ATLAS IP
- Operations
 - ▶ pp: $\sqrt{s} = 0.9$ TeV (2010), $\sqrt{s} = 2.76$ TeV (2013), $\sqrt{s} = 7$ TeV (2010), $\sqrt{s} = 13$ TeV (2015)
 - ▶ pPb: $\sqrt{s_{NN}} = 5$ TeV (2013,2016) $\sqrt{s_{NN}} = 5$ TeV (2016)

RHICf experiment

- Zero degree measurement at BNL-RHIC
- Only one detector at 18 m from STAR IP
- Spin asymmetry measurements with polarized proton beams
- Operation: pp $\sqrt{s} = 510 \text{ GeV}$ (2017)

LHCf experimental setup

The LHCf/RHICf detectors

Sampling and Positioning Calorimeters W (44 r.l., 1.7λ_I) and 16 GSO scintillator layers Four positioning sensitive layers; Arm1: XY-hodoscope of GSO bars (1mm step) Arm2: XY-Silicon strip (160 μm step) Each detector has two calorimeter towers,

The LHCf detectors

Calorimeter performances

EM showers

Energy resolution Beam test · Data at SPS ΔE/E > 5% Data AE/E > 5% Electron beam energy [GeV]

Had. showers

PID

400 GeV photon

1TeV photon

LHCf operations and results

Run	E _{lab} (eV)	Photon	Neutron	П0	
p-p √s=0.9TeV (2009/2010)	4.3x10 ¹⁴	PLB 715, 298 (2012)		_	
p-p √s=2.76TeV (2013)	4.1x10 ¹⁵			PRC 86, 065209 (2014)	PRD 94 032007 (2016)
p-p √s=7TeV (2010)	2.6x10 ¹⁶	PLB 703, 128 (2011)	PLB 750 360 (2015)	PRD 86, 092001 (2012)	
p-p √s=13TeV (2015)	9.0x10 ¹⁶	PLB 780, 233 (2018)	JHEP, 2018, 73 (2018)	on-going	
p-Pb √snn=5TeV (2013,2016)	1.4x10 ¹⁶			PRC 86, 065209 (2014)	
p-Pb √s _{NN} =8TeV (2016)	3.6x10 ¹⁶	Preliminary			
RHICf p-p √s=510GeV (2017)	1.4x10 ¹⁴		on-going		

π⁰ measurement

$$\pi^0 \rightarrow 2 \gamma$$

c $\tau = 25$ nm
BR = 99.8%

$$E_{\pi 0} = E_{g1} + E_{g2}$$
 • De $M_{\pi 0} = \sqrt{E_{g1}E_{g2}\theta^2}$ θ :oping angle btw g1 and g2

<u>Data</u>

- 3 + 5 hour operations in June 2015
- Arm1, one detector position
- Dedicated trigger for Type1 events

π⁰ spectra at pp, $\sqrt{s} = 13$ TeV

Neutron spectra, pp √s=13TeV

- In η > 10.76, data shows a strong increasing of neutron production in the high energy region. This behavior is not predicted by all models.
- EPOS-LHC and SIBYLL 2.3 have the best agreement in 8.99 < η < 9.22, 8.81 < η < 8.99, respectively.

Neutron spectra, pp √s=13TeV

Joint analysis with ATLAS

Identification of diffractive events by ATLAS

Method

• Event selection by N_{tracks}=0 ⇔

Large rapidity gap $\Delta n > 5$

N_{tracks}: the number of tracks detected

by ATLAS inner trackers ($|\eta|$ <2.5, p_T > 100 MeV)

- → Selecting pure samples of proton dissociations.
- \rightarrow Sensitive to only low-mass dissociations $M_X \lesssim 50 \text{ GeV}$

Measurement of contributions of diffractive processes to forward photon spectra in pp collisions at $\sqrt{s} = 13$ TeV

Preliminary result of the measurement for forward photons is published in a conference-note; ATLAS-CONF-2017-075

RHICf experiment

RHICf experiment

RHIC at BNL

• $pp \sqrt{s} = 510 \text{ GeV}$ (polarized beam)

Test of energy scaling with the wide p_T range.

 The operation was successfully completed in June 2017

Common operation with STAR

RHICf coverage: η > 6

Physics in RHICf

Cross-section measurement

✓ Measurement of √s dependency (=Energy scaling) with the wide p_T range equivalent to LHCf, \sqrt{s} =7TeV

→ Improve the prediction power of models in the wide energy rage.

 $p_{\rm T}$ coverage: < 1/2 $\sqrt{\rm s}$ sin θ

Spin asymmetry measurement

A PhD student, M. Kim, is completing π^0 asymmetry measurement (next pages)

spin asymmetry of π⁰ production

AN (transverse single-spin asymmetry) measurement

$$A_{N} = \frac{d\sigma_{Left} - d\sigma_{Right}}{d\sigma_{Left} + d\sigma_{Right}}$$

- Large asymmetry was found in $1 < \eta < 4$ (p_T >~1GeV/c)
- Explanations
 - Initial-stat effect ? final-stat effect ?
- Questions
 - \square A_N in the very forward region ? The RHICf detector covers η > 6, $p_T < 1$ GeV/c.

RHICf result: π⁰ spin asymmetry

- Large asymmetry (up to 0.1 GeV/c) even at low $p_T(p_T < 0.6 \text{ GeV/c})$
- Becoming large (more than 0.1 GeV/c) at high $p_T(p_T > 0.6 \text{ GeV/c})$

Data:

- RHICf 2017 operation with $pp \sqrt{s} = 510$ GeV
- Use both type1 and type2 π⁰ samples

Error bars : statistics

Error box : systematic

Future plans of LHCf/RHICf

- Operations at LHC, LHC-Run3
 - \square pp, $\sqrt{s}=13$ or 14TeV again
 - Increasing the statistics of π^0 and common events with ATLAS
 - measurement of η ($\eta \rightarrow 2\gamma$), K^0_s ($K^0_s \rightarrow 2\pi^0 \rightarrow 4\gamma$)
 - common-operation with ATLAS RP and ZDC
 - □ pO (OO) collisions
 - Ideal for studying the cosmic-ray interactions of CR-Air
 - Measurement of nuclear effect at light ion collisions
- Operation at RHIC
 - \square pp $\sqrt{s}=510$ GeV again in 2022.
 - Increase the statistics of π^0
 - measurement of η ($\eta \rightarrow 2\gamma$), K^0_s ($K^0_s \rightarrow 2\pi^0 \rightarrow 4\gamma$)

Kaons in atm. v productions

IceCube detected astronomical neutrinos. Better understanding of background (Atmospheric neutrinos) is required.

Atmospheric v_µ flux

An idea for the future operation at RHIC

- pp, \sqrt{s} =510GeV scheduled in 2022.
- Key of the operation
 - High statistics of π⁰ events
 - Detection of rare particles K⁰, Λ

Maximize the acceptance with keeping the performances, good energy and position resolution for individual particles

Ideal detector: Si Pad calorimeter
Collaboration required, with ALICE-FoCal ? with future EIC-ZDC ?

Summary

- LHCf/RHICf measures the energy spectra of neutral particles, γ,π⁰, and n in the very forward regions of collisions, which is important for understanding air-shower developments.
- Operations have successfully completed for LHCf pp: √s = 0.9, 2.76, 7, 13 TeV and pPb: √s_{NN} = 5, 8 TeV. RHICf pp: √s = 510GeV (polarized beam)
- Many results were already published and many analyses are still on-going including the combined analyses with ATLAS or STAR.
- Future plan
 - Operations at LHC with pp and pO (or OO) and operation at RHIC with pp

Backup

• Elasticity $k = \frac{E_{lead}}{E_{avail}}$

- If small k (π⁰s carry more energy): rapid development
- If large k (baryons carry more energy); deep penetrating

The coverage of the "wide" rapidity range by experiments is crucial

Especially
High Energy Flux
in "forward" region

 (n, p, π)

π⁰ p_T spectra at pp,7TeV

Joint Analysis with ATLAS - Selection of Diffractive interactions -

LHCf

Diffraction

o-p. √s = 13 TeV

E [GeV]

π⁰ p_z (~E) spectra at p+p,7TeV

DPMJET and Pythia overestimate over all E-p_T range

Measurement of contributions of diffractive processes to forward photon spectra in pp collisions at $\sqrt{s} = 13$ TeV

ATLAS-CONF-2017-075

- At η>10.94, the ratio of data increased from 0.15 to 0.4. with increasing of the photon energy up to 4TeV.
- PYTHIA8212DL predicts higher fraction at higher energies.
- SIBYLL2.3 show small fraction compare with data at η >10.94.
- At 8.81 $< \eta <$ 8.99, the ratio of data keep almost constant as 0.17.
- EPOS-LHC and PYTHIA8212DL show good agreement with data at $8.81 < \eta < 8.99$.

Update plan of the joint analysis

Diffractive (=Single+Double)

How much fraction of single diffractive in the selected events?

Going to measure the fraction by using ATLAS-MBTS (2.08 < $|\eta|$ < 3.86)

Photon at p-p, 13TeV

Photon at p-p, 13TeV

EPOS-LHC Good agreement in < 3,4 TeV of both high/low-η QGSJET II-04 Very nice overall agreement in the high-η Softer in the low-η

SIBYLL 2.3 Very nice overall agreement in the high-η Harder in the low-η

Energy [GeV]

Energy [GeV]

Photon Energy Flow

Energy Flow Calculation:

$$\frac{dE}{d\eta} = C_{thr} \frac{1}{\Delta \eta} \sum_{E_j > 200 GeV} E_j F(E_j)$$

F(Ej): Measured differential cross-section

Δη : The pseudo-rapidity range

Cthr : Correction factor for the threshold

200 GeV \rightarrow 0 GeV.

Ref: Y. Makino CERN-THESIS-2017-049

EPOS-LHC, SIBYLL2.3

Good agreement

QGSJET II-04

~ 30% lower than data

Neutron, p-p √s=13TeV

Motivation

- Inelasticity measurement k_{inela}
 - $k_{inela} = 1 E_{leading}/E_{beam}$
- Large discrepancies between data and model prediction were found in the measurement at p-p, √s=7TeV

<u>Data</u>

- 3 hour operation in June 2015
- Low pile-up, μ~0.01

Analysis

- Particle Identification
 EM shower → develop in shallow layers
 Hadronic showers → develop in deep layers
- Energy resolution of 40%
- Contamination of Δ^0 , K^0

